PERCENTAGES

Pearson Edexcel - Tuesday 6 November 2018 - Paper 1 (Non-Calculator) Higher Tier

1.

No (supported)	P1	for start to process, eg. 2100 $\times \frac{40}{100}$ (= 840)	May compare bonus shares of a single salesmar or total bonus share for all 7 salesmen.
	Pl	for process to find the 7 salesmen's share of bonus,	
	P1	for process to find bonus amount each salesman gets eg "1260" ÷ 7 (= 180)	
	DI	eg $\frac{2100}{10} \times 7 \ (= 1470)$	
	PI	or process to compare what a single satesman gets under each scheme, eg "180" × $\frac{25}{100}$ (= 45) and " $\frac{2100}{10}$ " - "180" (= 30) or "180" × $\frac{25}{100}$ (= 45) and "180" + "45" (= 225) oe and $\frac{2100}{10}$ (= 210) or (" $\frac{2100}{10}$ " - "180") ÷ "180" × 100 (= 16.6)	
		OR process to compare what all salesmen gets under each scheme, eg "1260" $\times \frac{25}{100} (= 315)$ and "1470" $-$ "1260" $(= 210)$ or "1260" $\times \frac{25}{100} (= 315)$ and "1260" $+$ "315" $(= 1575)$ oe and "1470"	
		or ("1470" – "1260") ÷ "1260" × 100 (= 16.6)	
	Al	'No' supported by correct figures, eg 45 and 30, 225 and 210, 315 and 210 or 1575 and 1470 or 16.(6)(% and 25%)	Do not award unless correct figures have been shown to support a statement made that the salesman was not correct.
		(supported) P1 P1	(supported) P1 for process to find the 7 salesmen's share of bonus, eg 2100 – "840" (= 1260) or 2100 × *60" (= 1260) P1 for process to find bonus amount each salesman gets eg "1260" + 7 (= 180) OR process to find the total bonus for all salesmen if shared equally, eg *2100 × 7 (= 1470) P1 for process to compare what a single salesman gets under each scheme, eg "180" × *25 (= 45) and *2100 (= 30) or "180" × *25 (= 45) and *3100 (= 30) or "180" × *25 (= 45) and *180" + "45" (= 225) oe and *2100 (= 210) or (*2100 / 10" - "180") + "180" × 100 (= 16.6) OR process to compare what all salesmen gets under each scheme, eg "1260" × *25 (= 315) and "1470" - "1260" (= 210) or "1260" × *25 (= 315) and "1260" + "315" (= 1575) oe and "1470" or ("1470" - "1260") + "1260" × 100 (= 16.6) A1 'No' supported by correct figures, eg 45 and 30, 225 and 210, 315 and 210

Pearson Edexcel - Tuesday 6 November 2018 - Paper 1 (Non-Calculator) Higher Tier

2.

11	20	P1 P1 A1	for start of process, eg $\frac{125}{100}$ oe or $\frac{100}{125}$ oe or $\frac{25}{125}$ for a suitable process to develop a percentage, either 80% or 20% eg. $\frac{100}{125} = \frac{x}{100}$ or $\frac{125-100}{125} = \frac{x}{100}$ or $\frac{p}{1.25m} = \frac{xp}{m}$ or $\frac{0.25p}{1.25m} = \frac{xp}{m}$ cao	Values of amount of cereal and cost may be used, eg. 100g of cereal costing £10 An acceptable start of a process would then be: 125g of cereal costing £10 using Jack's idea
----	----	----------	--	---

Pearson Edexcel - Thursday 8 June 2017 - Paper 2 (Calculator) Higher Tier

2	Yes	P1	for process to work out the total number of children, e.g. 117 × 4 (= 468)
	(supported)	P1	(dep P1) for process to work out total number of adults or the total number of people, e.g. " 468 " \times 5 ÷ 2 (= 1170) or " 468 " \times 7÷ 2 (= 1638)
		A1	for 1170 or 1638
		P1	for process to work out the percentage of theatre full,
			e.g. $\frac{\text{"468"} + \text{"1170"}}{2600} \times 100 \ (= 63)$ or for a process to work out 60% of 2600 $\ (= 1560)$
		Cl	for a correct conclusion supported by correct figures e.g. 63% or 1560 and 1638
			OR
		P1	for a process to work out 60% of 2600, eg. $\frac{60}{100} \times 2600$ (= 1560)
		P1	(dep P1) for process to work out this total number of children,
			e.g. "1560" × 2 ÷ 7 (= 445(.7))
		AI	for 445(.7)
		P1	for process to work out children in the circle, eg. "445(.7)" ÷ 4 (= 111 to 112)
		C1	for a correct conclusion supported by correct figures e.g. 111 to 112 [Where appropriate accept rounded or truncated values]
2 cont.			OR
		P1	for a process to find the maximum number of children, eg. $2600 \times 2 \div 7$ (= $742(.8)$)
		P1	for process to work out the total number of children, e.g. $117 \times 4 (= 468)$
		A1	for 468 and 742(.8)
		P1	for $\frac{\text{"468"}}{\text{"742(.8)"}} \times 100 \ (= 63)$ or process to work out 60% of "742(.8)" (= 445(.7))
		C1	for a correct conclusion supported by correct figures e.g. 63% or 468 and 445(.7)
			[Where appropriate accept rounded or truncated values]
			[where appropriate accept rounded of truncated values]

Pearson Edexcel - Specimen Papers Set 2 - Paper 2 (Calculator) Higher Tier

4.

2	(a)	Trend described	C1	for "percentage of people who use the shop decreases" oe
	(bi)	13 - 17	P1 A1	for process to draw trend line on graph for 13 - 17
	(bii)	No + reason	C1	for comment, eg "no, because 2020 is beyond the time period covered by the given data"

Pearson Edexcel - Specimen Papers Set 1 - Paper 2 (Calculator) Higher Tier

5.

8		66.9	P1 P1 P1	for process to find the area of one shape, eg. 19×16 (= 304) or $\pi\times8^2$ (= 201.06) for process to find the shaded area, eg. "304" – "201.06" $\div2$ (= 203.46) for a complete process to find required percentage, eg. " $\frac{203.46}{304}\times100$ for answer in range 66 to 68
---	--	------	----------------	--

Pearson Edexcel - Sample Paper 1 - (Non-Calculator) Higher Tier

5	28	Process to start to solve problem eg. $\frac{3}{5} \times 40$ or divide any number in the ratio 3:2
		P1 Second step in process to solve problem eg. $\frac{2}{5} \times 10$ or find number of males/females under 25 for candidate's chosen number for complete process
		A1

Pearson Edexcel - Thursday 26 May 2016 - Paper 1 (Non-Calculator) Higher Tier

7.

13	36	3	M1 for correct method to work out 20% of 30% (=6%) M1 for 30% + "6%" A1cao
			OR M1 for complete and correct method to find amount of money spent on rent eg 800×0.3 (=240) oe M1 for correct method to find rent next month (288) eg "240" × 1.2 (=288) oe or $\frac{"288"}{800} \times 100$ oe or 30×1.2 A1 cao

Pearson Edexcel - Friday 6 November 2015 - Paper 2 (Calculator) Higher Tier

8.

5		$0.65 \times 80 = 52$ $\frac{5}{8} \times 80 = 50$ $52 - 50$ Or $\frac{5}{8} = 0.625$ $0.65 - 0.625 = 0.025$ 0.025×80	2	4	M1 for method to calculate the time Celina sings M1 for method to calculate the time Zoe sings M1(dep on at least M1) for finding the difference between two times A1 cao Or M1 for a conversion to a common representation M1 (dep on M1) for finding the difference in their chosen representation M1 for using their proportional difference multiplied by 80 A1 cao
---	--	--	---	---	---

Pearson Edexcel - Wednesday 5 November 2014 - Paper 1 (Non-Calculator) Higher Tier

9.

*2		Maths with correct comparative figure(s)	M1 for correct method to find figure(s) to compare, eg $\frac{32}{80} \times 100$ (=40) oe or 0.38×80 oe (=30.4) C1 for maths with 40% or 30.4 or $\frac{40}{100}$ and $\frac{38}{100}$ oe

Pearson Edexcel - Wednesday 6 November 2013 - Paper 1 (Non-Calculator) Higher Tier

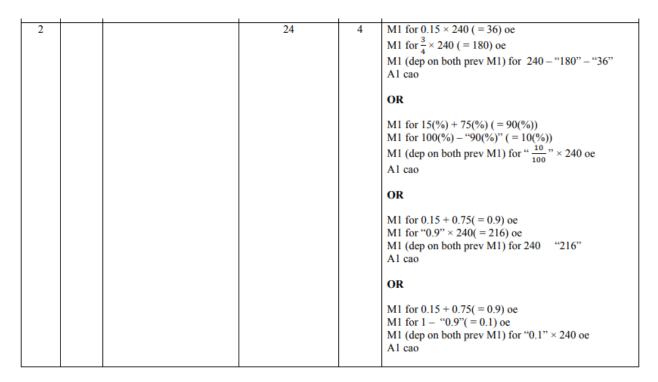
Pearson Edexcel - Friday 8 November 2013 - Paper 2 (Calculator) Higher Tier

11.

10 Merit 3 M1 for $\frac{62}{80} \times 100$ (=77.5) A1 for 77.5% or 78%
B1 ft (dep on M1) for 'Merit' OR M1 for calculating a percentage between 70 and 85% of 80 eg 0.7×80 (=56) or 0.84 × 80 (=67.2) or 0.85 × 80 (=68) A1 for 56 and 67(.2) or 68 or for two appropriate values which can be compared with 62 B1 ft (dep on M1) for 'Merit'

Pearson Edexcel - Friday 8 November 2013 - Paper 2 (Calculator) Higher Tier

12.


20		116	3	M1 for 80% or 0.8 seen oe or $\frac{464}{0.8}$ (=580) M1 for $\frac{464}{0.8}$ - 464 A1 cao OR M1 for 80% or 0.8 seen oe M1 for 464 ÷ 4 or 464 ÷ (80÷20) A1 cao
----	--	-----	---	---

Pearson Edexcel - Friday 8 November 2013 - Paper 2 (Calculator) Higher Tier

13.

27	M1 for attempt to work out total area (eg =600) or area greater than 60 (eg =72) by using fd or counting squares M1 (dep) for \frac{72'}{600'} \times 100 oe (=12) A1 cao (must have % otherwise 2 marks)
----	---

Pearson Edexcel - Tuesday 11 June 2013 - Paper 1 (Non-Calculator) Higher Tier

Pearson Edexcel - Tuesday 11 June 2013 - Paper 1 (Non-Calculator) Higher Tier

15.

16			£500	3	M1 for $70\% = 350$ or $\frac{350}{70}$ M1 for $\frac{350}{70} \times 100$ oe A1 cao
----	--	--	------	---	--

Pearson Edexcel - Monday 11 June 2012 - Paper 1 (Non-Calculator) Higher Tier

10	$2.25 \times 60 \div 100 = 1.35$ $1.35 + 0.80 = 2.15$ $1.5 \times 60 \div 100 = 0.90$ $0.90 + 1.90 = 2.80$	Railtickets with correct calculations	4	NB. All work may be done in pence throughout M1 for correct method to find credit card charge for one company eg. 0.0225 × 60(=1.35) oe or 0.015 × 60 (=0.9) oe M1 (dep) for correct method to find total additional charge or total price for one company eg. 0.0225×60 + 0.80 or 0.015×60 + 1.90 or 2.15 or 2.8(0) or 62.15 or 62.8(0) A1 for 2.15 and 2.8(0) or 62.15 and 62.8(0) C1 (dep on M1) for a statement deducing the cheapest company, but figures used for the comparison must also be stated somewhere, and a clear association with the name of each company OR M1 for correct method to find percentage of (60+booking fee) eg. 0.0225 × 60.8(=1.368) oe or 0.015 × 61.9(=0.9285) M1 (dep) for correct method to find total cost or total additional cost eg. '1.368' + 60.8(=62.168) or '1.368' + 0.8 (=2.168) or '0.9285' + 61.9 (=62.8285) or '0.9285' + 1.9 (=2.8285) A1 for 62.168 or 62.17 AND 62.8285 or 62.83 OR 2.168 or 2.17 AND 2.8285 or 2.83 C1 (dep on M1) for a statement deducing the cheapest company, but figures used for the comparison must also be stated somewhere, and a clear association with the name of
	OR			each company OR
				10000
	$2.25 - 1.5 = 0.75$ $0.075 \times 60 \div 100 = 0.45$ $0.80 + 0.45 = 1.25$ $1.25 < 1.90$			M1 for correct method to find difference in cost of credit card charge eg. (2.25 – 1.5) × 60 + 100 oe or 0.45 seen M1 (dep) for using difference with booking fee or finding difference between booking fees eg. 0.80 + "0.45"(=1.25) or 1.90 - "0.45" (=1.45) or 1.90 – 0.8 (=1.1(0)) A1 1.25 and 1.9(0) or 0.45 and 1.1(0) C1 (dep on M1) for a statement deducing the cheapest company, but figures used for the comparison must also be stated somewhere, and a clear association with the name of each company
				QWC: Decision and justification should be clear with working clearly presented and attributable

Pearson Edexcel - Wednesday 9 November 2011 - Paper 3 (Non-Calculator) Higher Tier

The state of the s	C. CERTAIN AND THE	-	
22.5% - 17.5% = 5%	9	3	M1 22.5 – 17.5
$180 \times \frac{5}{100}$			M1 $180 \times '\frac{5}{100}'$ oe
			Al cao
OR 221			OR
100			M1 $180 \times \frac{22\frac{1}{2}}{100}$ oe or $180 \times \frac{17\frac{1}{2}}{100}$ oe
$180 \times \frac{17\frac{1}{2}}{100} = 31.50$			M1 (dep) '40.50' - '31.50' A1 cao
40.50 - 31.50			
OR			OR
1.225 × 180 = 220.5			M1 1.225 × 180 or 1.175 × 180 M1 (dep) '220.5' – '211.5'
The state of the s			Al cao
220.5 – 211.5			[SC: Award M2 A0 for an answer of 9 with 1 arithmetic error]
	OR $180 \times \frac{5}{100}$ OR $180 \times \frac{22\frac{1}{2}}{100} = 40.50$ $180 \times \frac{17\frac{1}{2}}{100} = 31.50$ 40.50 - 31.50 OR	OR $180 \times \frac{5}{100}$ OR $180 \times \frac{2^{2} \frac{1}{2}}{100} = 40.50$ $180 \times \frac{17 \frac{1}{2}}{100} = 31.50$ $40.50 - 31.50$ OR $1.225 \times 180 = 220.5$ $1.175 \times 180 = 211.5$	OR $180 \times \frac{5}{100}$ OR $180 \times \frac{2^{2} \frac{1}{2}}{100} = 40.50$ $180 \times \frac{17 \frac{1}{2}}{100} = 31.50$ $40.50 - 31.50$ OR $1.225 \times 180 = 220.5$ $1.175 \times 180 = 211.5$

Pearson Edexcel - Friday 12 November 2010 - Paper 4 (Calculator) Higher Tier

18.

7	8 ÷ 20 × 100	40	2	M1 for $8 \div 20 \times 100$ or $\frac{8}{20} = \frac{8 \times 5}{20 \times 5}$ oe or $\frac{40}{100}$
				A1 cao

Pearson Edexcel - Friday 11 June 2010 - Paper 4 (Calculator) Higher Tier

19.

9	$\frac{84}{350} \times 100$	24	2	M1 for $\frac{84}{350} \times 100$ A1 cao

OCR GSCE - Monday 9 November 2020 - Paper 6 (Calculator) Higher Tier

20.

10	22	3	M2 for 1.403 ÷ 1.15 oe soi by 1.22 or B1 for 1.15 soi	Condone answer 22%
			Alternative method : If starting from (1 + k/100) × 1.15 = 1.403 M2 for reaching 1.15k/100 = 0.253 or B1 for the 1.15	

OCR GSCE – Monday 11 November 2019 – Paper 6 (Calculator) Higher Tier

21.

2	31218	5	$ \begin{array}{l} \textbf{M4} \ \text{for} \ 54868 - \frac{54868}{2.32} \ \ \text{oe} \\ \\ \text{or} \\ \textbf{M3} \ \text{for} \ \frac{54868}{2.32} \ \ \text{soi} \ \text{by} \ 23650 \ \text{or} \ 236.5 \\ \\ \text{or} \\ \textbf{M2} \ \text{for} \ 2.32 \ \text{or} \ 232[\%] \ \text{soi} \\ \\ \text{or} \\ \textbf{M1} \ \text{for} \ 1.32 \ \text{or} \ 132[\%] \ \text{soi} \\ \end{array} $	May be seen as $54868 \times \frac{132}{232}$ or 236.5×132 Examples of implied: 2.32 implied by [A =] $0.32B + 2B$ oe but not by $32[\%] \times B + 2B$ oe 1.32 implied by $0.32 + 1$ but not by $32[\%] + 1$ nor $0.32 + 100[\%]$
			If M1 only scored then also allow an SC1 for $\frac{54868}{1.32}$ soi by 41566 to 41567	32[%] + 1 nor 0.32 + 100[%]

OCR GSCE - Thursday 6 June 2019 - Paper 5 (Non-Calculator) Higher Tier

7		173.4[0]	6	M1 for evidence at some stage of intention to find the total ticket cost of 2 adults + 1 child (e.g. soi by 200 or 170) AND	This may be at the start or later if calculating individual ticket prices and payments even if errors in the prices Working with just an individual ticket price will be M2M2max)
				M2 for complete method to reduce any valid ticket price or combination by 15% (eg full attempt at 85% or 100% – 15%) isw or M1 for complete method to find 15% of a valid	Valid ticket price combinations are e.g. 40, 80, 120, 160, 200 "Complete method" means it would lead to a correct answer if not for arithmetic slips. M2 may be implied by e.g. 170, 34, 68, 102, 136 M1 may be implied by e.g. 30, 6, 12, 18, 24
				ticket price or combination isw AND	
				M2 for complete method to increase their ticket cost by 2% or M1 for complete method to find 2% of their ticket cost	May be from an original "valid ticket price or combination" or from a calculated sale price. The 2% increase and 15% decrease can be done in either order but if the15% decrease is done first with the original price the 2% increase must be done with <i>their</i> sale price and vice versa

OCR GSCE – Thursday 24 May 2018 – Paper 4 (Calculator) Higher Tier

23.

10		24	5	accept any correct method e.g. M1 for 1 – [0].6 soi by [0].4 or 40	Working may be in decimals (or %) e.g. table based on 100 :
				M1 for [0].6 × [0].2 or [0].12 or 12 soi by [0].096(9.6)	L L¹ M 12 48 60 M¹ 9.6 30.4 40 21.6 78.4 100
				M1 for [0].216 – [0].12 or [0].096(9.6)	
				M1 for <i>their</i> [0].096 ÷ [0].4 or [0].24	

OCR GSCE – Thursday 7 June 2018 – Paper 5 (Non - Calculator) Higher Tier

24.

4	Correct attempt to find 90% or 10% of 110	M1	or $\frac{99.4}{110}$ [×100] oe or $\frac{9.5+1.1}{110}$ [×100] oe	
	99 or 11 and 10.6	A1	or 90.36 to 90.4 or 9.6[4] and 10	M1 implied by 99 seen or 11 and 10.6 seen or 90.36 or 9.6[4] and 10 seen Be aware of 90.36 or 9.6[4] appearing
	[She is] correct oe	A1	Dep on M1A1 earned	without written evidence as possible calculator use Other methods are possible

OCR GSCE – Tuesday 6 November 2017 – Paper 5 (Non - Calculator) Higher Tier

7			308	5	M4 for 252 ÷ 0.9 × 1.1 oe OR M1 for 252 ÷ 0.9 oe A1 for 280 M1 for their 280 × 1.1 oe A1FT for their 280 × 1.1 rot to nearest pound or better	
---	--	--	-----	---	---	--

OCR GSCE – Thursday 25 May 2017 – Paper 4 (Calculator) Higher Tier

26.

5		34.5	3	M2 for 38.64 ÷ 1.12 oe	
				or B1 for 1.12 or 112	

OCR GSCE – Thursday 8 June 2017 – Paper 5 (Non - Calculator) Higher Tier

27.

12	120	5	M4 for 72 ÷ (0.5 × 1.2) oe Or M1 for 72 ÷ 0.5 A1 for 144 M1 for their 144 ÷ 1.2 A1FT for their 144 ÷ 1.2 correctly evaluated	A1 implies previous M1 FT rot to integer, implies previous M1
----	-----	---	--	---

AQA GSCE – Thursday 4 June 2020 – Paper 2 (Calculator) Higher Tier

	Alternative method 1 Total % for	or A after (6 tests – total % for B after 5 tests	
	60 × 5 or 300 or 52 × 5 or 260	M1	oe	
	$\frac{24}{50} \times 100$ or 0.48×100 or 48	M1	oe 348 implies M1M1	
	$60 \times 5 + \frac{24}{50} \times 100 - 52 \times 5$ or 300 + 48 - 260 or 88	M1dep	oe eg 348 – 260 dep on M1M1	
	44	A1	allow $\frac{44}{50}$	
10	Alternative method 2 Total score for A after 6 tests – total score for B after 5 tests			
	$\frac{60}{100} \times 50$ or 30	M1	oe allow $\frac{30}{50}$ implied by 150 or 174	
	$\frac{52}{100} \times 50$ or 26	M1	oe allow $\frac{26}{50}$ implied by 130	
	$\frac{60}{100} \times 50 \times 5 + 24 - \frac{52}{100} \times 50 \times 5$ or $150 + 24 - 130$	M1dep	oe eg 174 – 130 dep on M1M1	
	44	A1	allow $\frac{44}{50}$	

Mark scheme and Additional Guidance continues on the next two pages

	<u> </u>		· · · · · · · · · · · · · · · · · · ·		
	Alternative method 3 Total score for A after 6 tests – total score for B after 5 tests				
	50 × 5 or 250	M1	oe implied by 150 or 130 or 174		
	$\frac{60}{100} \times 50 \times 5 \text{ or } 150$ and $\frac{52}{100} \times 50 \times 5 \text{ or } 130$	M1dep	oe allow $\frac{150}{250}$ and $\frac{130}{250}$		
	$\frac{60}{100} \times 50 \times 5 + 24 - \frac{52}{100} \times 50 \times 5$ or $150 + 24 - 130$	M1dep	oe eg 174 – 130		
	44	A1	allow $\frac{44}{50}$		
10 cont	Alternative method 4 Difference in scores after 5 tests + 6th score for A				
	60 – 52 or 8	M1	oe		
	$\frac{60-52}{100} \times 50$ or 4	M1dep	oe eg $\frac{60}{100} \times 50 - \frac{52}{100} \times 50$ or $30 - 26$ allow $\frac{4}{50}$		
	$\frac{60-52}{100} \times 50 \times 5 + 24$ or $4 \times 5 + 24$ or $20 + 24$	M1dep	oe 50		
	44	A1	allow $\frac{44}{50}$		

Additional Guidance is on the next page

	Additional Guidance					
	To award the 3rd M a calculation or a value (not an equation) must be seen					
	Select the scheme that favours the student for the first 2 M marks even if not subsequently used					
10 cont	Alt 1 Do not award 1st M for 300 if incorrect method seen eg 6 × 50 = 300 does not score the 1st M					
	Alt 1 Do not award 2nd M for 48 if incorrect method seen eg 100 – 52 = 48 does not score the 2nd M					
	Alt 2 Do not award 2nd M for 26 if incorrect method seen eg 50 – 24 = 26 does not score the 2nd M					

AQA GSCE – Thursday 8 June 2020 – Paper 3 (Calculator) Higher Tier 29.

	I .		1
3	400%	B1	

AQA GSCE – Tuesday 21 May 2019 – Paper 1 (Non - Calculator) Higher Tier 30.

	Alternative method 1					
	$3 \div \frac{20}{100}$ or 3×5 or 15 or 3×6	M1	oe			
	18	A1				
7	Alternative method 2					
	1.2x = x + 3	M1	oe equation			
	18	A1				
	Additional Guidance					
	Trial and improvement scores 0 or 2 unless M1 can be awarded for 15					
	15 seen scores M1					

AQA GSCE – Thursday 8 November 2018 – Paper 2 (Calculator) Higher Tier

31.

	4 × 10 or 40 and 2 × 3 or 6		oe eg 50% and 30%	
19	or $\frac{2}{4}$ and $\frac{3}{10}$ or 0.5 and 0.3	M1		
	$\frac{2\times3}{4\times10}$ or $\frac{\text{their 6}}{\text{their 40}}$ or 0.15	M1dep	oe eg $\frac{3}{20}$ or $\frac{2}{4} \times \frac{3}{10}$	or 0.5 × 0.3
	15	A1		
	Additional Guidance			
	2:4 and 3:10			MO

AQA GSCE – Thursday 7 June 2018 – Paper 2 (Calculator) Higher Tier

32.

	400%	B1		
4 Additiona		tional Gu	uidance	

AQA GSCE – Thursday 6 November 2017 – Paper 2 (Calculator) Higher Tier

33.

	250%	B1		
2	Add	ditional G	Guidance	

AQA GSCE – Wednesday 25 May 2017 – Paper 1 (Non - Calculator) Higher Tier 34.

	Alternative method 1		
	4 × 15 or 60		oe
	or 2 × 10 or 20	M1	
	or 80		
	10 × their 80 or 8		oe
	100	M1dep	10 × their 60 or 6 or 66
11	1.1 and working for first M1 seen		or $\frac{10}{100}$ × their 20 or 2 or 22
	their 80 + their 8		oe
	or 1.1 × their 80	M1dep	their 60 + their 6 + their 20 + their 2
	or 88	штаор	or 1.1 × their 60 + 1.1 × their 20
			or their 66 + their 22
	0.03 × their 88 or 2.64	M1dep	oe
	or their 88 × 1.03	wituep	
	90.64(p)	A1	

	Alternative method 2		
	10/100 × 15 or 1.5(0)		oe
	and $\frac{10}{100}$ × 10 or 1	M1	
	or 1.1 seen		
	15 + their 1.5(0) or 15 × 1.1 or 16.5(0)		oe
	and	M1dep	27.5(0) implies M2
	10 + their 1 or 10 × 1.1 or 11		
11	their 16.5(0) × 0.03 or 0.495		oe
cont	and their 11 × 0.03 or 0.33		4 × their 16.5(0) + 2 × their 11
	or	M1dep	or their 66 + their 22
	their 16.5(0) × 1.03 or 16.995		or 88
	and their 11 × 1.03 or 11.33		
	their 0.495 × 4 + their 0.33 × 2		oe
	or 1.98 + 0.66 or 2.64		0.03 × their 88 or 2.64
	or	M1dep	or their 88 × 1.03
	their 16.995 × 4 or 67.98		
	and their 11.33 × 2 or 22.66		
	90.64(p)	A1	

	Alternative method 3		
	4 × 15 or 60 or 2 × 10 or 20	M1	oe
	or 80		
11	10/100 × their 80 or 8		oe $\frac{13}{100}$ × their 60 or 7.8(0)
	13/100 × their 80 or 10.4(0)	M1dep	or $\frac{13}{100}$ × their 20 or 2.6(0)
	or		
cont	1.13 and working for first M1 seen		
	their 80 + their 10.4(0)		oe
	or 1.13 × 80 or 90.4(0)	M1dep	60 + their 7.8(0) + 20 + their 2.6(0)
	or		or 67.8(0) + 22.6(0)
	0.03 × their 8 or 0.24		
	their 80 + their 10.4(0)		oe
	or 1.13 × 80 or 90.4(0)	M1dep	
	and		
	0.03 × their 8 or 0.24		
	90.64(p)	A1	

AQA GSCE – Tuesday 13 June 2017 – Paper 3 (Calculator) Higher Tier 35.

	Alternative method 1			
	25/100 × 18 000 or 4500 and 18 000 – their 4500		oe	
	or 18 000 × (1 – 0.25) or 18 000 × 0.75 or 13 500 or 0.88	M1		
	their 13 500 × (1 – 0.12) ⁴ or their 13 500 × 0.88 ⁴		oe Complete method for at least 4 years	
16	their 13 500 × (1 – 0.12) ³ or their 13 500 × 0.88 ³ or 9199.87 or 9199.88 or 9199.90 or 9200	M1dep		
	8095.88 or 8095.89 or 8095.90 or 8096 or 8096.00 or 8100 or 8100.00	A1	Correct money notation	
	Alternative method 2			
	25/100 × 18 000 or 4500 and 18 000 – their 4500 or 13 500 or 0.88	M1	oe	
	13 500, 11 880, 10 454.() 9199.()	M1dep	oe Complete method for at least 4 years	
	8095.88 or 8095.89 or 8095.90 or 8096 or 8096.00 or 8100 or 8100.00	A1	Correct money notation	

Additional guidance is on the next page

	Additional Guidance	
	Condone eg £8095.88p	M1M1A1
	8095.887	M1M1A0
16	Note the values for successive calculations are	
cont	13 500, 11880, 10454.4, 9199.87(2), 8095.88(736)	
	The values for successive savings are 4500, 1620, 1425.6, 1254.52(8), 1103.98	
	For method marks allow rounding or truncating of their totals or savings	

AQA GSCE – Sample Paper 1 (Non - Calculator) Higher Tier 36.

1	400 × 1.07	B1	

AQA GSCE – Sample Paper 3 (Calculator) Higher Tier

	Alternative method 1				
	6.31 – 3.6(0) or 2.71	M1			
	their 2.71 ÷ 3.6(0) (× 100) or 0.752(7) or 0.753	M1dep			
	75.2(7) or 75.28 or 75.3	A1	Allow 75 with correct method seen		
5	Alternative method 2				
	6.31 ÷ 3.6(0) (× 100) or 1.752(7) or 1.753 or 175.2(7) or 175.3	M1			
	1.752(7) – 1 or 1.753 – 1 or 175.2(7) – 100 or 175.3 – 100	M1dep			
	75.2(7) or 75.28 or 75.3	A1	Allow 75 with correct method seen		